Computational Method to Quantify the Evolution of Ocean Properties
نویسندگان
چکیده
Understanding the recent trends in observable changes of the ocean physical and chemical properties is of great importance in order to foresee their future evolution and to quantify the probable contribution of anthropogenic pressure to these changes. For that matter, it is necessary to consider new methods and concepts for the analysis and modelling of ocean properties. In this paper, we introduce an original set of computational tools to process data measurements in order to study the evolution of some ocean properties. The method will be utilized to thoroughly analyze the evolution of an ocean property through a given period of time and in a whole water column by comparing its values at a given space/time coordinate to a well-defined reference value. Results will be exploited to emphasize the so-called spreadability phenomenon. Some insight will be given on the spreadability concept, based on systems theory. The ocean property that was chosen for the application presented in this paper was salinity, using data from the DYFAMED program for the period 1994-2010. Other analysis aspects could be studied using the proposed method.
منابع مشابه
Computational evaluation of the homogeneity of composites processed by accumulative roll bonding (ARB)
A new computational method based on MATLAB was used to study the effect of different parameters on the homogeneity of composites produced by a severe plastic deformation technique known as accumulative roll bonding. For a higher number of passes, the degree of particle agglomeration and clustering decreased, and an appreciable homogeneity was obtained in both longitudinal and transverse directi...
متن کاملComputational Study on Reduction Potential of [CoP4N2(OH2)2]2+ as a Super-Efficient Catalyst in Electrochemical Hydrogen Evolution
Hydrogen is considered as a unique choice for future world’s resources. The important parameter in the process of hydrogen production is the value of reduction potential for the used catalyst, in direct contact with consumed energy in process. The application of computational methods to design and modify molecular catalysts is highly regarded. This study sought to explore Density Functional...
متن کاملDuctile Damage Evolution under Triaxial Stress Conditions: Computational and Experimental Evaluations
The continuum mechanic simulation of micro-structural damage process is important in the study of ductile fracture mechanics. In this paper, the continuum damage mechanics model formulation proposed by Lematire has been validated against ductile damage evolution experimentally measured in A533B-C1 steel under stress triaxiality conditions. First, a 
procedure to identify the model parameters...
متن کاملDuctile Damage Evolution under Triaxial Stress Conditions: Computational and Experimental Evaluations
The continuum mechanic simulation of micro-structural damage process is important in the study of ductile fracture mechanics. In this paper, the continuum damage mechanics model formulation proposed by Lematire has been validated against ductile damage evolution experimentally measured in A533B-C1 steel under stress triaxiality conditions. First, a procedure to identify the model parameters f...
متن کاملTectonic evolution of the Khoy ophiolitic complex, NW Iran
The Khoy Ophiolitic Complex (KOC) as a part of Tethyan, Izmir-Ankara- Erzincan and Bitlis-Zagros sutures of South East (SE) Turkey is broadly exposed around Khoy region (NW Iran). This complex comprises dismembered fragments of mantle lithosphere, obducted oceanic lithosphere and parts of volcanic arc remnants. The Khoy Ophiolitic Complex can be structurally divided into two major eastern and w...
متن کامل